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Palladium-catalyzed cross-coupling reactions that employ
halogenated porphyrin templates and a wide range of organome-
tallic moieties have provided synthetic entre´e into new families
of unusually elaborated porphyrin macrocyles.1-3 General,
economic syntheses of porphyryl organometallic reagents4 would
expand the scope of this methodology5,6 and aid in the design of
new classes of porphyrin-containing supramolecular assemblies
and tetraazamacrocycles with unconventional peripheral substit-
uents. Reported herein are the first examples of meso ring-
metalated porphyrin species in which boronic esters are appended
to a (porphinato)zinc(II) framework; we structurally characterize
the archetypal members of this new class of macrocycle-
derivatized porphyrins and briefly illustrate their utility in carbon-
carbon bond-forming reactions.

Masuda recently described a series of reactions in which
pinacolborane functions as a transmetalating reagent in Pd-
catalyzed cross-coupling reactions, enabling the synthesis of a
wide range of arylboronates from aryl halide precursors.7 Ap-
plication of this reaction to halogenated (porphinato)zinc(II)
complexes such as (5-bromo-10,20-diphenylporphinato)zinc(II)
and (5,15-dibromo-10,20-diphenylporphinato)zinc(II)1 gives the
corresponding [5-(4′,4′,5′,5′-tetramethyl[1′,3′,2′]dioxaborolan-2′-
yl)-10,20-diphenylporphinato]zinc(II) (I ) and [5,15-bis(4′,4′,5′,5′-
tetramethyl[1′,3′,2′]dioxaborolan-2′-yl)-10,20-diphenylporphinato]-
zinc(II) (II ) complexes in respective yields of 86 and 79%.8 These
compounds were structurally analyzed; the results of our single-
crystal X-ray crystallographic studies ofI ‚(benzene) andII ‚
(pyridine) are shown in Figure 1.

In II ‚(pyridine), the metal-ligand bond lengths and the
magnitude of the Zn atom displacement from the least-squares
plane defined by the macrocycle’s four Npyrrolyl atoms (0.35 Å)
typify that seen for other crystallographically characterized
(porphinato)zinc(II)‚(py) complexes.1b Interestingly,II ’s axial

pyridyl ligand lies in van der Waals contact with a second pyridyl
ring (interplanar separation 3.46 Å); the plane defined by this
pyridyl moiety lies parallel to that of the axial ligand. The
noncoordinating pyridine is rotated 60° about its perpendicular
C1 axis with respect to the axial pyridyl moiety and vertically
displaced 3.37 Å from the above-mentioned porphyrin plane; this
positions theπ system of each pyridine ring over the positively
chargedσ framework of the other, optimizing electronic interac-
tions between the six-membered heteroaromatic rings.9 Consistent
with structural studies of borate ester derivatives of 1-naphtha-
lene,10 the steric interactions between the porphyrinâ-hydrogens
and the pinacolborane oxygen atoms enforce large dihedral angles
(60.8 and 69.3°) between the planes defined by the two respective
sets of pinacol ester O-B-O atoms and the four pyrrolyl
nitrogens; the average O-(â-H) nonbonded contact distance is
2.65 Å,11 lying just within the sum of their van der Waals radii
(2.72 Å).12

In I ‚(benzene), the Zn atom is centered in the plane of the
porphyrin ligand. The benzene molecule is positioned above the
Zn atom in aπ-donor configuration; the interplanar separation
between the two aromatic ring systems is 3.10 Å, with the closest
Zn-Cbenzenedistance being 3.16 Å. The orientation of the arene
ring with respect to the porphyrin ligand is similar to that found
in Scheidt’s structure of the bis(toluene) solvate of (5,10,15,20-
tetraphenylporphinato)zinc(II).13 The dihedral angle between the
planes defined by the O-B-O atoms of themeso-boronate group
and the macrocyclic N atoms is 52.0° (O-(â-H) average nonbond-
ed contact distance 2.53 Å); because a sterically unencumbered
aromatic moiety functions as the axial ligand inI ‚(benzene), a
more closely packed solid-state arrangement is possible and is
thus the likely cause of reduction of the O-B-O plane-to-porphy-
rin plane dihedral angle with respect to those observed forII ‚(pyri-
dine). The B-C [I , 1.575(5) Å;II , 1.565(5) Å] and B-O bond
lengths [(I , 1.364(5) Å;II , 1.362(5) Å] for both complexes are
similar to that previously reported for arylboronic acid esters.10,14

The utility of these air- and water-stable ring-metalated por-
phyrins is exemplified in reactions whereI and II function as
transmetalating reagents. An exemplary set of such Suzuki-type
cross-couplings are presented in Scheme 1, which utilize a
compoundI synthon;15 a number of principles are illustrated in
these high-yield reactions: (i) Cross-coupling ofI with N-(tert-
butoxycarbonyl)-4-iodo-L-phenylalanine gives (5-[N-(tert-butoxy-
carbonyl)-L-phenylalanin-4′-yl]-10,20-diphenylporphinato)zinc-
(II) ( III ), corroborating the suitability of ring-metalatedI with
respect to coupling reactions involving nucleophile-sensitive
substrates. (ii) The synthesis of 3,6-bis[10′,20′-diphenylporphi-
nato(zinc)(II)-5′-yl]-9-H-carbazole (IV ) demonstratesI ’s value
in the fabrication of porphyrin-spacer-porphyrin systems.16 Such
reactions can be exploited when a dihalogenated spacer moiety
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bears a functionality incompatible with direct formation of its
corresponding bis(organometallic) derivative or when practical
considerations warrant using porphyrylboronates as an expendable
transmetalating species. BecauseI is available in two steps from
(5,15-diphenylporphinato)zinc(II), carrying out carbon-carbon
bond-forming reactions with excessI enables the most efficient
use of mono- and dihalogenated organic substrates derived from
multiple synthetic steps. (iii) The synthesis of [10-(8′-(2′′,5′′-
dimethoxyphenyl)-1′-naphthyl)-5,15-diphenylporphinato]zinc-
(II) (V) from I and 1-(2′,5′-dimethoxyphenyl)-8-iodonaphthalene
illustrates the efficacy of this porphyrylboronate in sterically

congested cross-coupling reactions.17 The close, sub van der
Waals interplanar separation18 between the cofacial aromatic
entities of V is highlighted by the unusual local magnetic
environment experienced by the C-4′′ dimethoxyphenyl proton
(δ ) 2.42 ppm); this nucleus resonates 4.53 ppm upfield from
that observed for the corresponding C-4′ proton of 1-(2′,5′-
dimethoxyphenyl)-8-iodonaphthalene.

Ring-metalated porphyrylboronic acids and their corresponding
esters expand the repertoire of reagents that can be utilized in
metal-catalyzed coupling reactions that form new bonds at the
porphyrin periphery. Given the established, rich chemistry of
boronate, boronic acid, and borane derivatives of aromatic
compounds,19 porphyrylboronates should likely serve as versatile
precursor molecules that enable facile introduction of carbon-
heteroatom bonds directly at the macrocycle skeleton. Further-
more, diboronate-functionalizedII and related multiply boronated
porphyryl species constitute a new class of synthons for porphyrin-
based conjugated materials that are formed via metal-catalyzed
carbon-carbon bond-forming reactions1-3 or hydroboration po-
lymerization.20
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Figure 1. ORTEP views of (a) [5-(4′,4′,5′,5′-tetramethyl[1′,3′,2′]dioxaborolan-2′-yl)-10,20-diphenylporphinato]zinc(II)‚(benzene) and (b) [5,15-bis-
(4′,4′,5′,5′-tetramethyl[1′,3′,2′]dioxaborolan-2′-yl)-10,20-diphenylporphinato]zinc(II)‚(pyridine) with thermal ellipsoids at 30% probability.

Scheme 1.Examples of Metal-Catalyzed Cross-Coupling
Reactions Utilizing Porphyrylboronate Transmetalating
Reagentsa

a Reagents and conditions: Ba(OH)2‚8 H2O (0.24 mmol), Pd(PPh3)4

(0.003 mmol), 50:1 DME/H2O, 80 °C. (i) I (0.16 mmol), N-(tert-
butoxycarbonyl)-4-iodo-L-phenylalanine (0.08 mmol); (ii)I (0.2 mmol),
3,6-dibromocarbazole (0.05 mmol); (iii)I (0.08 mmol), 1-(2′,5′-dimeth-
oxyphenyl)-8-iodonaphthalene (0.08 mmol).
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